Penn Arts & Sciences Logo

Friday, January 21, 2011 - 2:00pm

Alex Barnett

Dartmouth

Location

University of Pennsylvania

Heilmeier Hall (100 Towne)

Many numerical problems arising in modern photonic and electromagnetic applications involve the interaction of linear waves with periodic, piecewise-homogeneous media. Boundary integral equations are an efficient approach to solving such boundary-value problems with high-order convergence. In the case of plane-wave scattering from an array (grating), the standard way to periodize is then to replace the free-space Green's function kernel with its quasi-periodic cousin. However, a major drawback is that the quasi-periodic Green's function fails to exist for parameter families known as Wood's anomalies, even though the underlying scattering problem remains well-posed.

We bypass this problem with a new integral representation that relies on the *free-space* Green's function alone, adding auxiliary layer potentials on the boundary of the unit cell strip, while enforcing quasi-periodicity with an expanded linear system. The result is a 2nd kind scheme that achieves spectral accuracy, is immune to Wood's anomalies, avoids lattice sums, and reuses existing scattering codes. A doubly-periodic version provides similar benefits for the robust solution of the eigenvalue (band structure) problem for Bloch waves in a photonic crystal. We show two-dimensional examples achieving 10-digit accuracy with only a couple of hundred unknowns.

Joint work with Leslie Greengard (NYU).