Penn Arts & Sciences Logo

Monday, February 18, 2013 - 10:00pm

David A. Sivak

UCSF

Location

University of Pennsylvania

Lynch Lecture Hall

Non-equilibrium Thermodynamics: Free Energy, Optimal Control, and Optimal Response

Abstract: Molecular machines are protein complexes that convert between different forms of energy, and they feature prominently in essentially any major cell biological process. A plausible hypothesis holds that evolution has sculpted these machines to efficiently transmit energy and information in their natural contexts, where energetic fluctuations are large and non-equilibrium driving forces are strong. Toward a systematic picture of efficient, stochastic, non-equilibrium energy and information transmission, I present theoretical developments in three distinct yet related areas of non-equilibrium statistical mechanics: How can we measure how far from equilibrium a driven system is? How do we find efficient methods to push a system rapidly from one state to another? And finally, what are generic properties of systems that efficiently harness the energy and information present in environmental fluctuations?