Penn Arts & Sciences Logo

AMCS/PICS Colloquium

Friday, September 30, 2016 - 2:00pm

Nigel Goldenfeld

Professor of Physics, UIUC

Location

University of Pennsylvania

Towne 337

How do fluids become turbulent as their flow velocity is increased? In recent years, careful experiments in pipes and Taylor-Couette systems have revealed that the lifetime of transient turbulent regions in a fluid appears to diverge with flow velocity just before the onset of turbulence, faster than any power law or exponential function. I show how this superexponential scaling of the turbulent lifetime in pipe flow is related to extreme value statistics, which I show is a manifestation of a mapping between transitional turbulence and the statistical mechanics model of directed percolation.  This mapping itself arises from a further surprising and remarkable connection: laminar and turbulent regions in a fluid behave as a predator-prey ecosystem. Such ecosystems are governed by individual fluctuations in the population and being naturally quantized, are solvable by path integral techniques from field theory. I explain the evidence for this mapping, and propose how a unified picture of the transition to turbulence emerges in systems ranging from turbulent convection to magnetohydrodynamics.