Math 260, Final Exam

1. Write a basis for the space of pairs (u, v) of smooth functions $u, v: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy the system of linear differential equations

$$
\begin{aligned}
& u^{\prime}=4 u-2 v \\
& v^{\prime}=1 u+1 v
\end{aligned}
$$

2. Using the definition of the total derivative prove that $\left[\begin{array}{ll}1 & 1\end{array}\right]$ is the total derivative of the function $f(x, y)=x+y$ everywhere.
3. Determine if each of the following limits exist, if so give the limit. [You can quote any theorem stated in class.] (Prove your claims.)
4. $\lim _{(x, y) \rightarrow(0,0)}\left(\frac{x}{x+y}\right)$
5. $\lim _{(x, y) \rightarrow(1,1)} \frac{e^{(x y)}}{\cos x+3 y}$
6. Let V the vector space of polynomials of degree $\leq 2 \in[0,1]\}$ with the L_{2} product. Let $\mathbf{B}=\left\{5,2 x, 3 x^{2}\right\}$ be a basis of V. Write the matrix Q corresponding to the inner product $<,>$ with respect to the basis \mathbf{B}. Using Q, compute the inner product of two arbitrary $p, q \in V$.
7. Prove that if μ is an eigenvalue of an orthogonal matrix (equivalently of an orthonomal transformation), then $\mu= \pm 1$.
8. Compute the total derivative of the function $f(x, y, z)=\frac{z}{\sqrt{x^{2}+y^{2}}}$ at the point $(3,4,5)$.
9. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y, z)=x y+z^{2}$. Find all critical points of f and explain their behavior. Are there any global min/max?
10. Use Lagrange multipliers to find the extreme values of the function $f(x, y)=$ $x^{2}+y$ along the line $y=x$.
11. Evaluate the integral $\int_{D}(x+y+z+1)^{3}$ where D is the solid bounded by the coordinate planes and the plane $x+y+z=1$.
Set up the integral in iterated form (using Fubini's theorem)
but do not complete the evaluation.
12. Let S be the surface parametrized by: $\Phi:[1,2] \times[0, \pi] \rightarrow \mathbb{R}^{3}$ as

$$
\Phi(u, v)=\left(u \cos (v), u \sin (v), \frac{1}{2} u^{2} \sin (2 v)\right) .
$$

Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by $f(x, y, z)=e^{x+y z}$.
Set up the complete iterated integral (using Fubini's theorem): $\int_{S} x y z$.
Do not carry out the integration.
11. Compute the best quadratic approximation of the function $f(x, y)=e^{x+2 y}$ at the point $(0,0)$.
12. Let S be the surface $\left\{x^{2}+y^{2}+z^{2}=1, z \geq 0\right\}$ and let $\mathbf{F}(x, y, z)=(x+y+$ $z, x y+y z+z x, x y z)$.
Use Stokes' theorem to compute: $\int_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n}$; here \mathbf{n} is outward normal vector. Set up the complete integral but do not carry out the integration.
13. Let S be the surface $\left\{x^{2}+y^{2}+z^{2}=1, z \geq 0\right\}$.

Compute $\int_{S}(y \mathbf{i}+z \mathbf{j}+x \mathbf{k}) \cdot \mathbf{n}$ by using the divergence theorem on the solid $\left\{x^{2}+y^{2}+z^{2} \leq 1, z \geq 0\right\}$.
14. A matrix A is skew-symmetric if $A^{t}=-A$ Prove that if A is a $n \times n$ skewsymmetric matrix with n odd, then $\operatorname{det}(A)=0$.

