Printed Name
Math 312

Final Exam

Jerry L. Kazdan
May 5, 2014
12:00-2:00
Directions This exam has three parts. Part A has 5 shorter questions, (6 points each), Part B has 6 True/False questions (5 points each), and Part C has 5 standard problems (12 points each). Maximum score is thus 120 points.
Closed book, no calculators or computers- but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes on both sides. Clarity and neatness count.
Part A: Five short answer questions (6 points each, so 30 points).
A-1. Suppose $T: \mathbb{R}^{6} \rightarrow \mathbb{R}^{4}$ is a linear map represented by a matrix, A.
a) What are the possible values for the rank of A ? Why?
b) What are the possible values for the dimension of the kernel of A ? Why?
c) Suppose the rank of A is as large as possible. What is the dimension of $\operatorname{ker}(A)^{\perp}$? Explain.

Score	
A-1	
A-2	
A-3	
A-4	
A-5	
B	
C-1	
C-2	
C-3	
C-4	
C-5	
Total	

A-2. In the following equations $\quad x_{1}+x_{2}+2 x_{3}+x_{4}=1$

$$
\begin{aligned}
x_{1}-x_{2}-2 x_{3}+x_{4}= & 0 \\
-x_{1}+x_{2}-2 x_{3}+x_{4}= & 3 \\
-x_{1}-x_{2}+2 x_{3}+x_{4}= & 2
\end{aligned}
$$

solve for for x_{2} (only!). [ObSERVE that if you write this as $x_{1} \vec{v}_{1}+\cdots+x_{4} \vec{v}_{4}=\vec{b}$, then the vectors \vec{v}_{j} are orthogonal.]

A-3. Let $P_{1}=\left(a_{1}, b_{1}\right), P_{2}=\left(a_{2}, b_{2}\right), \ldots P_{5}=\left(a_{5}, b_{5}\right)$ be five points in the plane \mathbb{R}^{2}. Find the point $Q=(x, y)$ that minimizes

$$
f(x, y)=\left\|P_{1}-Q\right\|^{2}+\left\|P_{2}-Q\right\|^{2}+\cdots+\left\|P_{5}-Q\right\|^{2}
$$

A-4. Let A be an $n \times k$ matrix.
a) If $\lambda_{1} \neq 0$ is an eigenvalue of $A^{*} A$, show that it is also an eigenvalue of $A A^{*}$. [Note where you use $\lambda_{1} \neq 0$].
b) If \vec{v}_{1} and \vec{v}_{2} are orthogonal eigenvectors of $A^{*} A$, let $\vec{u}_{1}=A \vec{v}_{1}$, and $\vec{u}_{2}=A \vec{v}_{2}$. Show that \vec{u}_{1} and \vec{u}_{2} are orthogonal.

A-5. Let A be a real matrix with the property that $\langle\vec{x}, A \vec{x}\rangle=0$ for all real vectors \vec{x}.
a) If A is a symmetric matrix, show this implies that $A=0$.
b) Give an example of a matrix $A \neq 0$ that satisfies $\langle\vec{x}, A \vec{x}\rangle=0$ for all real vectors \vec{x}.

Part B Six True or False questions (5 points each, so 30 points). Be sure to give a brief explanation.

B-1. If $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is a collection of vectors in \mathbb{R}^{5}, then the span of $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ must be a threedimensional subspace of \mathbb{R}^{5}.

B-2. The set of polynomials in \mathcal{P}_{4} satisfying $p(0)=2$ is a linear subspace of \mathcal{P}_{4}.

B-3. If $A: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ be a linear map and ker $A^{*}=0$, then for any $\vec{b} \in \mathbb{R}^{n}$ there is at least one solution of $A \vec{x}=\vec{b}$.

B-4. If A is a 3×3 matrix with eigenvalues 1,2 , and 4 , then $A-4 I$ is invertible.

B-5. If A is diagonalizable square matrix, then so is A^{2}.

B-6. If a real matrix A can be orthogonally diagonalized, then it is self-adjoint (that is, symmetric).

Part C Five questions, 12 points each (so 60 points total).
[Check your computation of any eigenvalues by computing the trace and determinant of the matrix].
$\mathrm{C}-1$. Let $A: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ be a linear map.
a) If $k=n$, so A is represented by a square matrix, show that ker $A=0 \operatorname{implies}$ that A is also onto - and hence invertible.
b) If $k \neq n$, show that A cannot be invertible. Note there are two cases: $k<n$ and $k>n$.

C-2. a) Find an orthogonal matrix R that diagonalizes $A:=\left(\begin{array}{rrr}2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 3\end{array}\right)$.
b) Compute A^{50}.
$\mathrm{C}-3$. Of the following four matrices, which can be orthogonally diagonalized; which can be diagonalized (but not orthogonally); and which cannot be diagonalized at all. Identify these - fully explaining your reasoning.

$$
A=\left(\begin{array}{lll}
0 & 2 & 1 \\
2 & 0 & 3 \\
1 & 3 & 0
\end{array}\right), \quad B=\left(\begin{array}{lll}
3 & 1 & 3 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right), \quad C=\left(\begin{array}{lll}
2 & 3 & 0 \\
0 & 2 & 2 \\
0 & 0 & 2
\end{array}\right), \quad D=\left(\begin{array}{ccc}
1 & 0 & 3 \\
0 & 2 & 0 \\
3 & 0 & 1
\end{array}\right)
$$

C-4. Let $A=\left(\begin{array}{rr}1 & 0 \\ 2 & 2 \\ 0 & -1\end{array}\right)$. Find a vector \vec{v} that maximize $\|A \vec{x}\|$ on the unit disk $\|\vec{x}\|=1$. What is this maximum value?
$\mathrm{C}-5$. Let $\vec{x}(t)=\binom{x_{1}(t)}{x_{2}(t)}$ be a solution of the system of differential equations

$$
\begin{aligned}
& x_{1}^{\prime}=c x_{1}+x_{2} \\
& x_{2}^{\prime}=-x_{1}+c x_{2}
\end{aligned}
$$

For which value(s) of the real constant c do all solutions $\vec{x}(t)$ converge to 0 as $t \rightarrow \infty$?

